

CMPT 478/981 Spring 2025 Quantum Circuits & Compilation Matt Amy

Today's agenda

- Paper discussion (Classical oracles)
- Time evolution ("Quantum" oracles)

Hamiltonian simulation

- Quantum computing's "killer app"
- Idea is to simulate a quantum mechanical system with a quantum computer
- Works by implementing the time evolution operator U(t) = e^{-iHt} where H is a Hermitian matrix called the system's Hamiltonian
- Compilation of U(t) depends on the Hamiltonian but generic results exist

Theorem-ish (Lloyd, 1996)

A k-local Hamiltonian can be implemented in poly-time (ish)

Example: Ground state estimation

- Use phase estimation (i.e. Shor) to estimate an eigenvalue of Hamiltonian
- Replaces modular multiplication with time evolution operator U(t)

Implementing the time evolution operator

In chemistry contexts, usually a fermionic Hamiltonian $H = \sum_{p,q} h_{pq} \hat{a}_p^{\dagger} \hat{a}_q + \sum_{p,q,r,s} g_{pqrs} \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_r \hat{a}_s$

• Apply a mapping to spin (Pauli) operators to get

$$H' = \sum_{i} s_i P_i + \sum_{i,j} d_{ij} P_i P_j + \dots$$

Problem: Pauli terms don't commute, i.e. $e^{A+B} = = e^A e^B$

Classic solution: Product formulas

- Trotter formula gives limit of e^{A+B} as many alternations of fractions of $e^{A}e^{B}$ $e^{i(A+B)t} = \lim_{n \to \infty} (e^{iA/n}e^{iB/n})^n$
- Basic idea: select small enough n=epsilon to give good enough error bound
 Result is a looooong, repeating string of Pauli exponentials around small angles

Pauli exponentials

- Recall: Cliffords map Paulis to Paulis
- Given e^{-iPt} for Pauli P, diagonalize as $Ce^{-i(I \otimes I \otimes ... \otimes I \otimes Z)t}C^{\dagger}$
 - \Rightarrow Implement as Clifford basis change + single-qubit Z rotation

Pauli partitioning

- Important optimization in both NISQ & FTQEC regimes
- Problem: Given a spin Hamiltonian H, break up into minimal number of commuting subsets of Paulis
 - E.g. $H = ZXZ + IZI + IIX + XZX \rightarrow \{ZXZ\}, \{IZI, IIX, XZX\}$
- Commuting subset can be simultaneously diagonalized!
 - Map first Pauli to ZI...I
 - Remaining Paulis only have Z in first qubit, so iterate on next n-1 qubits
 - Result is a set of tensor products of Z
 - \rightarrow Exponential is a phase polynomial! More on optimizing those later...

Implementing commuting Paulis

- Result is some set $\{P\}$ of Z-type Paulis $e^{-iaZiZjZk}|x> = e^{-ia(xi^{\oplus}xj^{\oplus}xk)}|x>$, i.e. Phase polynomial!
- How to iterate through linear functions of n bits?
 - Gray code!

- In general don't need all linear functions, so can we do better?
 - Heuristically, yes (Gray-synth, Amy Azimzadeh & Mosca "On the CNOT-complexity of CNOT-phase circuits)
 - NP-hard in special cases
 - Complexity of general case still unknown

Modern solutions: linear combinations of unitaries

- Modern alternative to product formulas is to use Linear Combination of Unitaries (LCU) in various ways
- Basic idea: to implement the sum aU + bV of unitaries
 - (PREPARE) Prepare a register in the state a|0> + b|1>
 - (SELECT) Apply a quantum multiplexor which sends $|0>|\psi> \rightarrow |0>U|\psi>$ and $|1>|\psi> \rightarrow |1>V|\psi>$

Hamiltonian simulation "algorithms"

= methods of compiling a unitary circuit approximating time evolution

Product-formula based

- Product formulas
- Multi-product formulas
- Higher-order product formulas
- QDrift

LCU-based

- Taylor series approximation
- Quantum Signal Processing
- Qubitization

Compiling time evolution operators

Non-trivial task to automate due to

- calculation of error bounds
- calculation of e.g. roots of high degree polynomials (QSP)
- combinatorial explosion of parameters & combinations of techniques
 - Jordan-Wigner vs Bravyi-Kitaev vs direct Fermionic Hamiltonian
 - ~6-7 algorithmic frameworks each with choices within
 - Possibility to combine techniques for separate parts of the Hamiltonian
 - Different models of Hamiltonians & qubit reduction techniques
- Goal for compilers is to automate at least some of the frequent tasks
 - LCU/block encodings
 - Grouping & compiling sequences of Pauli exponentials

Readings for next week

Posted to the website

- Childs et al., *Toward the first quantum simulation with quantum speedup*. arxiv.org:1711.10980
 - Focus on the main paper & understand the high-level structure of the various algorithms
 - You may skip over the derivation and analysis of error bounds
- Nam, Su, Maslov, Approximate Quantum Fourier Transform with O(nlog(n)) T gates. arXiv:1803.04933
 - Pay attention here to the **use of an adder to implement the phase gates**
- Campbell, *A random compiler for fast Hamiltonian simulation*. arXiv:1811.08017
- As before send me a short (paragraph or two) summary of ONE (1) paper of your choice before next class and be prepared to give a short summary of any of the papers in class