
CMPT 478/981 Spring 2025
Quantum Circuits & Compilation

Matt Amy



Today’s agenda

■ Paper discussion (Classical oracles)
■ Time evolution (“Quantum” oracles)



Time evolution



Hamiltonian simulation

■ Quantum computing’s “killer app”
■ Idea is to simulate a quantum mechanical system with a quantum computer
■ Works by implementing the time evolution operator U(t) = e-iHt where H is a 

Hermitian matrix called the system’s Hamiltonian
■ Compilation of U(t) depends on the Hamiltonian but generic results exist

Theorem-ish (Lloyd, 1996)
     A k-local Hamiltonian can be implemented in poly-time (ish)



Example: Ground state estimation

■ Use phase estimation (i.e. Shor) to estimate an eigenvalue of Hamiltonian
■ Replaces modular multiplication with time evolution operator U(t)



Implementing the time evolution operator

■ In chemistry contexts, usually a fermionic Hamiltonian

■ Apply a mapping to spin (Pauli) operators to get

■ Problem: Pauli terms don’t commute, i.e. eA+B =/= eAeB



Classic solution: Product formulas

■ Trotter formula gives limit of eA+B as many alternations of fractions of eAeB

■ Basic idea: select small enough n=epsilon to give good enough error bound
■ Result is a looooong, repeating string of Pauli exponentials around small 

angles



Pauli exponentials

■ Recall: Cliffords map Paulis to Paulis
■ Given e-iPt for Pauli P, diagonalize as Ce-i(I⊗I⊗…⊗I⊗Z)tC†

■ ⇒ Implement as Clifford basis change + single-qubit Z rotation



Pauli partitioning

■ Important optimization in both NISQ & FTQEC regimes

■ Problem: Given a spin Hamiltonian H, break up into minimal number of 
commuting subsets of Paulis
■ E.g. H = ZXZ + IZI + IIX + XZX → {ZXZ}, {IZI, IIX, XZX}

■ Commuting subset can be simultaneously diagonalized!
■ Map first Pauli to ZI…I
■ Remaining Paulis only have Z in first qubit, so iterate on next n-1 qubits
■ Result is a set of tensor products of Z

■ → Exponential is a phase polynomial! More on optimizing those later…



Implementing commuting Paulis 

■ Result is some set {P} of Z-type Paulis
■ e-iaZiZjZk|x> = e-ia(xi⊕xj⊕xk)|x>, i.e. Phase polynomial!

■ How to iterate through linear functions of n bits?
■ Gray code!

■ In general don’t need all linear functions, so can we do better?
■ Heuristically, yes (Gray-synth, Amy Azimzadeh & Mosca “On the CNOT-complexity of 

CNOT-phase circuits)
■ NP-hard in special cases
■ Complexity of general case still unknown



Modern solutions: linear combinations of unitaries

■ Modern alternative to product formulas is to use Linear Combination of 
Unitaries (LCU) in various ways

■ Basic idea: to implement the sum aU + bV of unitaries
■ (PREPARE) Prepare a register in the state a|0> + b|1>
■ (SELECT) Apply a quantum multiplexor which sends |0>|ψ> → |0>U|ψ> and |1>|ψ> → |1>V|ψ>



Hamiltonian simulation “algorithms”

■ = methods of compiling a unitary circuit approximating time evolution

■ Product-formula based
■ Product formulas
■ Multi-product formulas
■ Higher-order product formulas
■ QDrift

■ LCU-based
■ Taylor series approximation
■ Quantum Signal Processing
■ Qubitization



Compiling time evolution operators

■ Non-trivial task to automate due to 
■ calculation of error bounds
■ calculation of e.g. roots of high degree polynomials (QSP)
■ combinatorial explosion of parameters & combinations of techniques

■ Jordan-Wigner vs Bravyi-Kitaev vs direct Fermionic Hamiltonian
■  ~6-7 algorithmic frameworks each with choices within
■ Possibility to combine techniques for separate parts of the Hamiltonian
■ Different models of Hamiltonians & qubit reduction techniques

■ Goal for compilers is to automate at least some of the frequent tasks
■ LCU/block encodings
■ Grouping & compiling sequences of Pauli exponentials



Readings for next week

■ Posted to the website
■ Childs et al., Toward the first quantum simulation with quantum speedup. arxiv.org:1711.10980

■ Focus on the main paper & understand the high-level structure of the various algorithms 
■ You may skip over the derivation and analysis of error bounds

■ Nam, Su, Maslov, Approximate Quantum Fourier Transform with O(nlog(n)) T gates. arXiv:1803.04933
■ Pay attention here to the use of an adder to implement the phase gates

■ Campbell, A random compiler for fast Hamiltonian simulation. arXiv:1811.08017

■ As before send me a short (paragraph or two) summary of ONE (1) paper of 
your choice before next class and be prepared to give a short summary of any 
of the papers in class


